
SANDIA REPORT
SAND2004-4820
Unlimited Release
Printed September 2004

Amesos 2.0 Reference Guide

Marzio Sala

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s
National Nuclear Security Administration under Contract DE-AC04-94-AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of
Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government, nor any agency
thereof, nor any of their employees, nor any of their contractors, subcontractors, or their
employees, make any warranty, express or implied, or assume any legal liability or re-
sponsibility for the accuracy, completeness, or usefulness of any information, appara-
tus, product, or process disclosed, or represent that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service
by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute
or imply its endorsement, recommendation, or favoring by the United States Govern-
ment, any agency thereof, or any of their contractors or subcontractors. The views and
opinions expressed herein do not necessarily state or reflect those of the United States
Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from
the best available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.doe.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

D
EP

ARTMENT OF ENERG
Y

•
 •
U
N

IT
ED

STATES OF AM

ER
IC

A

���������
	�	
�

������
	
����������������� �!������"�#��

Printed
� �%$&�����(')�%* �
	�	
�

Amesos 2.0 Reference Guide

Marzio Sala
Computational Math & Algorithms

Sandia National Laboratories
P.O. Box 5800, MS 1110

Albuquerque, NM 87185-1110

Abstract

This document describes the main functionalities of the version 2.0 of the AMESOS pack-
age. AMESOS provides an object-oriented interface to several serial and parallel sparse direct
solvers libraries for the solution of the linear system of equations

+-,/.1032
(1)

where
+

is a real sparse, distributed matrix, defined as an Epetra RowMatrix object, and
,

and
0

are defined as Epetra MultiVector objects. AMESOS provides a common look-and-
feel for all interfaces, and insulates the user from each solver’s details, such as matrix and
vector formats, and data distribution. Currently supported libraries are: LAPACK, KLU,
UMFPACK, PARDISO, TAUCS, SuperLU, SuperLU DIST, MUMPS, DSCPACK.

This document is organized as follows. First, Section 1 introduces the design of AMESOS.
Section 2 presents the basic usage of the AMESOS package. Section 3 details how to configure
and compile AMESOS. Section 4 describes the interfaces of AMESOSto the supported direct
solvers. A brief note on the examples included in the distribution is reported in Section 5.

3

Acknowledgments

The author would like to acknowledge the support of the ASCI and LDRD programs that funded
development of AMESOS.

4

Amesos 2.0 Reference Guide

Contents

1 The Design of AMESOS . 6
2 Basic Usage . 7

2.1 Supported Matrix Formats . 9
2.2 Parameters for All AMESOS Solvers . 9

3 Configuring and Installing AMESOS . 12
4 Supported Solvers . 14

4.1 Interface to LAPACK . 14
4.2 Interface to KLU . 14
4.3 Interface to UMFPACK 4.3 . 16
4.4 Interface to PARDISO 1.2.3 . 16
4.5 Interface to TAUCS 2.2 . 17
4.6 Interface to SuperLU 3.0 . 17
4.7 Interface to SuperLU DIST 2.0 . 17
4.8 Interface to MUMPS 4.3.1 . 19
4.9 Interface to DSCPACK 1.0 . 22

5 Guide to the Examples . 22

5

1 The Design of AMESOS

The AMESOS package, developed by (in alphabetical order) T. Davis, M. Heroux, R. Hoekstra, M.
Sala, and K. Stanley, is an effort to define a set of object-oriented, abstract interfaces for the usage
of serial and parallel sparse direct solvers. Although one serial direct solver, KLU, is distributed
within AMESOS, the goal of the AMESOS project is to make it easier to interface a code that makes
use of EPETRA objects with direct solver libraries developed outside TRILINOS.

AMESOS is written in C++, and has been designed with the following requirements:

� Simplicity of usage: Solving linear system (1) in a language like MATLAB is very easy,
just write X = A \ b. It should not be much more difficult in a C++, production code.

� Flexibility: More than one algorithm must be available, to offer optimal algorithms for
small and large matrices, serial and parallel.

� Efficiency: The solution of (1) must be as efficient as possible, using state-of-the-art algo-
rithms. Besides, the overhead due to the C++ design must be minimal.

To fulfill these design requirements, we split the solution of linear system (1) into the following
steps:

1. Definition of the sparsity pattern of the linear system matrix;

2. Computation of the symbolic factorization;

3. Definition of the values of the linear system matrix;

4. Computation of the numeric factorization;

5. Definition of the values of the right-hand side;

6. Solution of the linear system.

Steps 1, 3 and 5 depend on the matrix and vector format. To increase flexibility, AMESOS requires
the matrix to be derived from the Epetra_RowMatrix format, and the solution and right-hand
side vector to the defined as Epetra_MultiVector’s.

Steps 2, 4 and 6 correspond to three different methods in the AMESOS classes. From an ab-
stract point of view, these steps do not depend on the direct solver of choice. However, their
concrete implementations does, since different libraries may require different matrix and vector
formats and distribution, may have different parameters or different ways of setting the same pa-
rameter. To obtain flexibility, AMESOS insulates the user from the details specific to each solver, so
that generic methods can be used to manipulate all the supported interface. This design goal is ac-
complished using a pure virtual class, which defines methods SymbolicFactorization(),
NumericFactorization() and Solve(), plus method SetParameters() which can
be used to tune the interface.

To increase efficiency, all AMESOS classes are defined as light containers. Each class simply
converts the matrix A from the input Epetra_RowMatrix format into the solver’s required
format, and sets the parameters are defined by the user. Therefore, AMESOS interfaces are as
efficient as the underline solver library.

6

2 Basic Usage

A fragment of code using AMESOS is as follows. Let us suppose that A is an Epetra_RowMatrix,
and X and B are two Epetra_MultiVector’s. First, we need to include the header files for
AMESOS:

#include "Amesos.h"
#include "Amesos_BaseSolver.h"

Note that these header files will not include the header files for the supported libraries (which
are of course needed to compile the AMESOS library itself). Then, we need to create an linear
problem, as follows:

Epetra_LinearProblem Problem(&A, &X, &B);

At this point, we can create an AMESOS class using the factory class Amesos:

Amesos_BaseSolver* Solver;
Amesos Factory;
char* SolverType = "Amesos_Klu"; // uses the KLU direct solver
Solver = Factory.Create(SolverType, Problem);

At this point, we can perform the symbolic factorization of the linear system matrix:

AMESOS_CHK_ERR(Solver->SymbolicFactorization());

This phase does not require the numerical values of A, which can therefore be changed after the
call to SymbolicFactorization(). However, the nonzero pattern of A cannot be changed.
AMESOS_CHK_ERR is a macro (defined in Amesos_ConfigDefs.h) that checks the return
code: if not zero, the macro prints out an error message, and returns. The numeric factorization is
performed by

AMESOS_CHK_ERR(Solver->NumericFactorization());

NumericFactorization() accesses the values of A, but does not consider the vectors X and
B. Finally, to solve the linear system, we simply write

AMESOS_CHK_ERR(Solver->Solve());

In the previous example, we showed how to use the KLU solver (see Section 4.2 for more
details). Other interfaces can be created using the factory class by simply changing one parameter.
Note that the supported solver can be serial or parallel, dense or sparse: the user code still remains
the same (except for the name of the solver); AMESOS will take care of data redistribution if
required by the selected solver. The list of supported solvers is reported in Table 1. Method
Factory.Query() can be used to query the factory about the availability of a given solver:

char* SolverType = "Amesos_Klu";
bool IsAvailable = Factory.Query(SolverType);

7

Class Communicator Matrix type Interface to
Amesos Lapack serial general LAPACK
Amesos Klu serial general KLU
Amesos Umfpack serial general UMFPACK 4.3
Amesos Pardiso serial/OMP general PARDISO 1.2.3
Amesos Taucs serial symmetric TAUCS 2.2
Amesos Superlu serial general SuperLU 3.0
Amesos Superludist parallel general SuperLU DIST 2.0
Amesos Mumps parallel SPD, sym, general MUMPS 4.3.1
Amesos Dscpack parallel symmetric DSCPACK 1.0

Table 1. Supported interfaces. “serial” means that the supported direct
solver is serial. In this case, when solving with more than one proces-
sor, the linear problem is gathered to process 0, here solved, then the
solution is broadcasted to the distributed solution vector. “serial/OMP”
means that the solver does not support MPI, but it can take advantage
of OMP. Amesos will consider the solver as serial (therefore, the lin-
ear system is gathered on processor zero), but the user can still specify
the number of OMP processes. “parallel” means that a subset or all the
processes in the current communicator will be used by the solver. “gen-
eral” means general unsymmetric matrix. If “sym” (symmetric matrix)
or “SPD” (symmetric positive definite), the direct solver library can take
advantage of that particular matrix property.

8

Each AMESOS interface automatically selects the default parameters defined by the supported
solver. In most cases, these values are a robust and reliable choice for most applications. If
required, the user can tune some of the parameters by using a parameter list, which can be created
with the following instructions:

Teuchos::ParameterList List;

Parameters can be set using method set():

List.set(ParameterName,ParameterValue);

ParameterName is a string containing the parameter name, and ParameterValue is any
valid C++ object that specifies the parameter value (for instance, an integer, a pointer to an array
or to an object). The list of parameters that affect all AMESOS solvers are reported in Section 2.2,
while parameters that are specific to a given solver (if any) are reported in the Section of this
document dedicated to that solver. Once a list is created, parameters can be set using method
SetParameters(List).

Remark 1. All AMESOS object are derived from pure virtual class Amesos_BaseSolver. A
pure virtual class is a class that defines interfaces only, and contains no executable code. Pure
virtual classes cannot be instantiated; however, it is possible to declare and use pointers and
references to a pure virtual class, as normally done with class Amesos BaseSolver.

Remark 2. AMESOS is an interface to other packages, mainly developed outside the Trilinos
framework. In order to use those packages, the user should carefully check copyright and licensing
of those third-party codes. Please refer to the web page or the documentation of each particular
package for details.

Remark 3. AMESOS is used by other TRILINOS packages. In particular, IFPACK can take ad-
vantage of AMESOS to define additive overlapping domain decomposition preconditioners (of
Schwarz type), by using AMESOS’ factorizations to solve the local problems; see [10]. Another
package, ML, takes advantages of the AMESOS interfaces to solve the coarse problem that arises
in multilevel preconditioners; see [11].

2.1 Supported Matrix Formats

Table 2 reports the supported matrix types for all the AMESOS classes. In the table, “Transp”
means that AMESOS can solve both the linear system with the linear system matrix and with its
transpose. ‘ � ’ means that the interface can take advantage of the given matrix format, ‘–’ means
that it doesn’t.

2.2 Parameters for All AMESOS Solvers

We now list all the parameters that may affect all the AMESOS solvers. To know whether a specific
interface supports a given parameter, we refer to table 3.

UseTranspose If false, solve linear system (1). Otherwise, solve the
linear system

���������
.

9

Class Transp Epetra RowMatrix Epetra CrsMatrix Epetra VbrMatrix
Amesos Lapack yes � � –
Amesos Klu yes � � –
Amesos Umfpack yes � � –
Amesos Pardiso no � – –
Amesos Taucs no � – –
Amesos Superlu no � � –
Amesos Superludist no � � –
Amesos Mumps yes � – –
Amesos Dscpack yes � – –

Table 2. Supported matrix formats. “Transp” means that AMESOS can
solve both the linear system with the linear system matrix and with its
transpose. ‘ � ’ means that the interface can take advantage of the given
matrix format, ‘–’ means that it doesn’t.

MatrixType Set it to SPD if the matrix is symmetric positive definite,
to symmetric if symmetric, and to general is the
matrix is general unsymmetric.

Threshold In the conversion from Epetra RowMatrix to a solver’s
format, do not include elements whose absolute value
is below the specified threshold.

AddZeroToDiag If true, insert a zero element on the diagonal of the
matrix (in the format required by the supported direct
solver library) for each row with no diagonal element.

PrintTiming Print some timing information when the AMESOS ob-
ject is destroyed.

PrintStatus Print some information about the linear system and the
solver when the AMESOS object is destroyed.

ComputeVectorNorms After solution, compute the 2-norm of each vector in
the Epetra MultiVector

�
and
�

.

ComputeTrueResidual After solution, compute the real residual
� ��� ��� ���

for all vectors in Epetra MultiVector.

10

MaxProcs If positive, the linear system matrix will be distributed
on the specified number of processes only (or the all
the processes in the MPI communicator if the specified
number is greater). If MaxProcs=-1, AMESOS will
estimate using internal heuristics the optimal number of
processes that can efficiently solve the linear system. If
MaxProcs=-2, AMESOS will use the square root of
the number of processes. If MaxProcs=-3, all pro-
cesses in the communicator will be used.
This option may require the conversion of a C++ MPI
communicator to a FORTRAN MPI communicator. If
this is not supported, the specified value of MaxProcs
will be ignored, and all the processes in the Epetra com-
municator will be used.

OutputLevel If 0, no output is printed on the standard output. If
1, output is reported as specified by other param-
eters. If 2, all output is printed (this is equivalent
to PrintTiming == true, PrintStatus
== true, ComputeVectorNorms == true,
ComputeTrueResidual == true).

Refactorize “Refactorization” of a matrix refers to the use of a prior
symbolic and numeric factorization (including row and
column ordering), to factorize a subsequent matrix us-
ing the same pivot ordering. This can be significantly
faster, but the numerical quality of the factorization may
suffer. If true, then attempt to re-use the existing sym-
bolic and numeric factorization, to factorize a new ma-
trix using the identical pivot ordering (both row and col-
umn ordering) as a prior pivot-capable factorization.

RcondThreshold After a refactorization, an estimate of the reciprocal
of the condition number is computed. If this estimate
is too small (less than RcondThreshold), then the
pivot-less factorization is aborted, and the matrix is fac-
torized again with normal numerical pivoting.

11

ScaleMethod Most methods can scale the input matrix prior to fac-
torization. This typically improves the quality of the
factorization and reduces fill-in as well. Setting this pa-
rameter to zero turns off scaling. A value of 1 selects
the method’s default scaling method (which may in fact
be not to scale at all). A value of 2 means to scale the
matrix using the first non-default method the solver has,
3 means to use its 2nd alternative method, and so on.

Solver-specific parameters are reported in each direct solver’s subsection. The general proce-
dure is to create a sublist with a given name (for instance, the sublist for MUMPS is ”mumps”),
then set all the solver’s specific parameters in this sublist. An example is as follows:

int ictnl[40];
// defines here the entries of ictnl
Teuchos::ParameterList & MumpsList = AmesosList.sublist("mumps");
MumpsList.set("ICTNL", ictnl);

Parameters and sublists not recognized are simply ignored. Recall that parameter names are case
sensitive!

3 Configuring and Installing AMESOS

AMESOS is distributed through the Trilinos project, and can be downloaded from the web site
http://software.sandia.gov/trilinos/downloads.

AMESOS requires two other TRILINOS packages, EPETRA and TEUCHOS. Each of the AME-
SOS classes provides an interface to a third-party direct sparse solver code (exception to this rule is
KLU, which is distributed within AMESOS). In order to configure and compile a given interface,
the user must first install the underlying direct sparse solver code. Generally, the BLAS library is
required. Some solvers may need CBLACS, LAPACK, BLACS, ScaLAPACK.

AMESOS is configured and built using the GNU autoconf [3] and automake [4] tools. To con-
figure AMESOS from the Trilinos top directory, a possible procedure is as follows. Let $TRILINOS_HOME
be a shell variable representing the location of the Trilinos source directory, and % the shell
prompt sign. Let us suppose that we want to configure AMESOS on a LINUX machine with
MPI, with support for KLU and UMFPACK. Header files for UMFPACK are located in directory
/usr/local/umfpack/include, while the library, called libumfpack.a is located in
/usr/local/umfpack/lib. The configure like will look like:

% cd $TRILINOS_HOME
% mkdir LINUX_MPI
% cd LINUX_MPI
% ../configure \
--enable-mpi \
--prefix=$TRILINOS_HOME/LINUX_MPI \
--enable-amesos \

12

option type default value K
L

U

U
M

F
PA

C
K

PA
R

D
IS

O

TA
U

C
S

S
up

er
L

U
D

IS
T

M
U

M
P

S

L
A

PA
C

K

D
S

C
PA

C
K

1.
0

UseTranspose bool false � � – – – � � –
MatrixType string general – – – – – � – –
Threshold double 0.0 – – – – – – – –
AddZeroToDiag bool false – – � � � – – –
PrintTiming bool false � � � � – � � �

PrintStatus bool false � � � � � � � �

MaxProcs int -1 – – – – � � � �

MaxProcsMatrix int -4 – – – – – � – –
ComputeVectorNorms bool false � � � � � � � �

ComputeTrueResidual bool false � � � � � � � �

OutputLevel int 1 � � � � � � � �

Refactorize bool false � – – – – – – –
RcondThreshold double

� � � ��

� – – – – – – –
ScaleMethod int 1 � – – – – – – –

Table 3. Supported options. ‘ � ’ means that the interface supports the
options, ‘–’ means that it doesn’t.

13

--enable-amesos-klu \
--enable-amesos-umfpack \
--with-incdirs="-I/usr/local/umfpack/include" \
--with-ldflags="-L/usr/local/umfpack/lib" \
--with-libs="-lumfpack"

% make
% make install

Other flags may be required depending on the location of MPI, BLAS and LAPACK. Supported
architectures are reported in Table 4.

Remark 4. The KLU sources are distributed with the AMESOS package. We strongly encourage
to configure AMESOS with KLU support. KLU and LAPACK are the only interface that are turned
on by default.

Up-to date documentation for AMESOS is maintained through Doxygen, and it can be gener-
ated with the following commands:

% cd $TRILINOS_HOME/packages/amesos
% cd doc
% doxygen
% <your-browser> html/index.html

4 Supported Solvers

This Section details the solvers supported by AMESOS. The LAPACK interface is presented in
Section 4.1, the KLU interface in Section 4.2, the UMFPACK interface in Section 4.3, the PAR-
DISO interface in Section 4.4, the TAUCS interface in Section 4.5, the SuperLU interface in
Section 4.6, the interface to SuperLU DIST in Section 4.7, the MUMPS interface in Section 4.8,
and finally the DSCPACK interface in Section 4.9.

4.1 Interface to LAPACK

AMESOS must be configured with the option --enable-amesos-lapack in order to use the
LAPACK interface. Header files and the LAPACK library are automatically located by configure.

LAPACK is a (suite of) serial solver(s). AMESOS will gather all matrix rows on processor
zero before the symbolic factorization, and all matrix values before the numeric factorization. On
process 0, the matrix will be converted to dense storage, using Epetra_SerialDenseMatrix
objects. A call to Solve() requires a gather of the right-hand side on process 0, the local solution
of the linear system, and finally a scatter operation, to redistribute as necessary the solution vector.

4.2 Interface to KLU

KLU is Timothy A. Davis’ implementation of Gilbert-Peierl’s left-looking sparse partial pivoting
algorithm, with Eisenstat and Liu’s symmetric pruning. It doesn’t exploit dense matrix kernels,

14

Architecture Communicator LAPACK KLU UMFPACK SuperLU SuperLU DIST 2.0 MUMPS 4.3.1 DSCPACK 1.0
LINUX SERIAL � � � � – – –
LINUX, GNU LAM/MPI � � � � � – �

LINUX, Intel MPICH � � � – – � �

SGI 64 MPI � � � – � � –
DEC/Alpha MPI � � � – – – –
MAC OS X/G4 MPICH � � – – – – –
Sandia Cplant MPI � � � – � � –
Sandia ASCI Red MPI � � � – � – –

Table 4. Supported architectures for various interfaces. ‘ � ’ means that
the interface has been successfully compiled, ‘–’ means that it has not
been tested.

15

but it is the only sparse LU factorization algorithm known to be asymptotically optimal, in the
sense that it takes time proportional to the number of floating-point operations. It is the precursor
to SuperLU, thus the name (”Clark Kent LU”). For very sparse matrices that do not suffer much
fill-in (such as most circuit matrices when permuted properly) dense matrix kernels do not help,
and the asymptotic run-time is of practical importance.

In order to use KLU, AMESOS must be configured with the option --enable-amesos-klu.

4.3 Interface to UMFPACK 4.3

UMFPACK is a C package copyrighted by Timothy A. Davis. More information can be obtained
at the web page http://www.cise.ufl.edu/research/sparse/umfpack.

AMESOS must be configured with the option --enable-amesos-umfpack to use the
UMFPACK interface. The location of the header files should be specified using --with-incdirs,
the location of the library with --with-ldflags, and the library to be linked by --with-libs.
See Section 3 for an example.

4.4 Interface to PARDISO 1.2.3

PARDISO is package to solve large sparse symmetric and non-symmetric linear systems on shared
memory multi-processors, developed at the Computer Science Department of the University of
Basel. A discussion of the algorithms used in PARDISO and more information on the solver
can be found at http://www.computational.unibas.ch/cs/scicomp and in docu-
ments [12, 13].

AMESOS must be configured with the option --enable-amesos-pardiso to use the
PARDISO interface. The location of the header files should be specified using --with-incdirs,
the location of the library with --with-ldflags, and the library to be linked by --with-libs.
See Section 3 for an example.

The Amesos interface to PARDISO supports non-symmetric matrices only (from the PAR-
DISO manual, the matrix type is 11). PARDISO control parameters are specified using the IPARM
vector. The user can

The PARDISO interface will look for a sublist, called Pardiso. The user is referred to
PARDISO manual for a detailed explanation of the reported parameters.

IPARM(1) (int) Use default values. Default: 0.

IPARM(2) (int) Fill-in reduction reordering. Default: 0.

IPARM(3) (int) Number of processors. Default: 1.

IPARM(4) (int) Preconditioned CGS. Default: 0.

IPARM(8) (int) Default: 0.

16

IPARM(10) (int) Iterative refinement steps. Default: 0.

IPARM(11) (int) MPS scaling of the unsymmetric reoredering.
Default: 8.

IPARM(18) (int) Number of nonzeros in factors. Default: -1.

IPARM(19) (int) MFlops in factorization. Default: 0.

IPARM(21) (int) Pivoting for indefinite symmetric matrices. De-
fault: 1.

4.5 Interface to TAUCS 2.2

TAUCS, authored by S. Toledo, is a serial Cholesky solver [9, 8, 5]. AMESOS must be config-
ured with the option --enable-amesos-taucs to use the TAUCS interface. The location of
the header files should be specified using --with-incdirs, the location of the library with
--with-ldflags, and the library to be linked by --with-libs. See Section 3 for an exam-
ple.

4.6 Interface to SuperLU 3.0

SuperLU, written by Xiaoye S. Li, is a serial solver written in ANSI C. It is copyrighted by The
Regents of the University of California, through Lawrence Berkeley National Laboratory. We
refer to the web site http://www.nersc.gov/˜xiaoye/SuperLU and to the SuperLU
manual [2] for more information.

In order to interface with SuperLU DIST 2.0, AMESOS must be configured with the option
--enable-amesos-superlu. The location of the header files should be specified using
--with-incdirs, the location of the library with --with-ldflags, and the library to be
linked by --with-libs. See Section 3 for an example.

4.7 Interface to SuperLU DIST 2.0

SuperLU DIST, written by Xiaoye S. Li, is a parallel extension to the serial SuperLU library.
SuperLU DIST is written in ANSI C, using MPI for communication, and it is targeted for the
distributed memory parallel machines. SuperLU DIST includes routines to handle both real and
complex matrices in double precision. However, as AMESOS is currently based on the Epetra
package (that does not handle complex matrices), only double precision matrices can be consid-
ered.

17

Amesos Superludist can solve the linear system on a subset of the processes, as specified in
the parameters list. This is done by creating a new process group derived from the MPI group of
the Epetra Comm object, with function superlu_gridinit().

In order to interface with SuperLU DIST 2.0, AMESOS must be configured with the option
--enable-amesos-superludist. The location of the header files should be specified using
--with-incdirs, the location of the library with --with-ldflags, and the library to be
linked by --with-libs. See Section 3 for an example.

The SuperLU DIST constructor will look for a sublist, called Superludist. The follow-
ing parameters reflect the behavior of SuperLU DIST options argument, as specified in the Su-
perLU DIST manual [2, pages 55–56]. The user is referred to this manual for a detailed explana-
tion of the reported parameters. Default values are as reported in the SuperLU DIST manual.

Fact (string) Specifies whether or not the fac-
tored form of the matrix

�
is supplied on en-

try and, if not, how the matrix will be fac-
tored. It can be: DOFACT, SamePattern,
SamePattern SameRowPerm, FACTORED.
Default: SamePattern SameRowPerm.

Equil (bool) Specifies whether to equilibrate the system of
not. Default: true.

ColPerm (string) Specifies the column ordering strategy. It
can be: NATURAL, MMD AT PLUS A, MMD ATA,
COLAMD, MY PERMC. Default: MMD AT PLUS A.

perm c (int *) Specifies the ordering to use when ColPerm
= MY PERMC.

RowPerm (string) Specifies the row ordering strategy. It can
be: NATURAL, LargeDiag, MY PERMR. Default:
LargeDiag.

perm r (int *) Specifies the ordering to use when RowPerm
= MY PERMR.

ReplaceTinyPivot (bool) Specifies whether to replace the tiny diagonals
with �

� � �
during LU factorization. Default: true.

IterRefine (string) Specifies how to perform iterative refine-
ment. It can be: NO, DOUBLE, EXTRA. Default:
DOUBLE.

18

4.8 Interface to MUMPS 4.3.1

MUMPS (“MUltifrontal Massively Parallel Solver”) is a parallel direct solver, written in FOR-
TRAN 90 with a C interface, copyrighted by P. R. Amestoy, I. S. Duff, J. Koster, J.-Y. L’Excellent.
Up-to-date copies of the MUMPS package can be obtained from the Web page

http://www.enseeiht.fr/apo/MUMPS/

MUMPS can solve the original system (1), as well as the transposed system, given an assem-
bled or elemental matrix. Note that only the assembled format is supported by Amesos Mumps.
Mumps offers, among other features, error analysis, iterative refinement, scaling of the original
matrix, computation of the Schur complement with respect to a prescribed subset of rows. Re-
ordering techniques can take advantage of PORD (distributed within MUMPS), or METIS [6]1.
For details about the algorithms and the implementation, as well as of the input parameters, we
refer to [1]

In order to interface with MUMPS 4.3.1, AMESOS must be configured with the option2

--enable-amesos-mumps. The location of the header files should be specified using --with-incdirs,
the location of the library with --with-ldflags, and the library to be linked by --with-libs.
See Section 3 for an example.

It is also possible to configure with support for the single precision version of MUMPS, using
option --enable-amesos-smumps. This is intended to be used when the precision of the
solution is not of primary importance, for example, if AMESOS is used to solve the coarse problem
in multilevel preconditioners, like ML [11]. In this case, users may decide to use single-precision
solves of the coarse problem to save memory and computational time. As AMESOS is based on the
Epetra LinearProblem class (defined for double precision only), this interface still requires double-
precision matrix and vectors. After the solver phase, the single precision vector is copied into
the double-precision solution vector of the given Epetra LinearProblem. If the single precision
interface is enabled, this automatically disables the double-precision one.

The MUMPS constructor will look for a sublist, called mumps. The user can set all the
MUMPS’s parameters, by sticking pointers to the integer array ICNTL and the double array CNTL
to the parameters list, or by using the functions reported at the end of this section.

ICTNL (int[40]) Pointer to an integer array, containing the
integer parameters (see [1, pages 13–17]).

CTNL (double[5]) Pointer to an double array, containing
the double parameters (see [1, page 17]).

PermIn (int *) Use integer vectors of size NumGlobalEle-
ments (global dimension of the matrix) as given order-
ing. PermIn must be defined on the host only, and
allocated by the user, if the user sets ICNTL(7) = 1.

1At this time, METIS ordering is not supported by class Amesos Mumps.
2The MUMPS interface can take be used on a subset of the processes. To that aim, it must be possible to convert from

a C++ MPI communicator to a FORTRAN MPI communicator. Such a conversion is not always possible. In you experi-
ence compilation problems with Amesos Mumps, you can try the option --disable-amesos-mumps mpi c2f.

19

Maxis (int) Set Maxis value.

Maxs (int) Set Maxs value.

ColPrecScaling (double *) Use double precision vectors of size
NumGlobalElements (global dimension of the matrix)
as scaling for columns and rows. The double vector
must be defined on the host only, and allocated by the
user, if the user sets ICNTL(8) = -1.

RowPrecScaling (double *) Use double precision vectors of size
NumGlobalElements (global dimension of the matrix)
as scaling for columns and rows. The double vector
must be defined on the host only, and allocated by the
user, if the user sets ICNTL(8) = -1.

Other functions are available to check the output values. The following Amesos Mumps meth-
ods are not supported by the Amesos BaseSolver class; hence, the user must create an Ame-
sos Mumps object in order to take advantage of them.

double* GetRINFO() Gets the pointer to the RINFO array (defined on all pro-
cesses).

int* GetINFO() Gets the pointer to the INFO array (defined on all pro-
cesses).

double* GetRINFOG() Gets the pointer to the RINFOG array (defined on pro-
cessor 0 only).

int* GetINFOG() Gets the pointer to the INFOG array (defined on proces-
sor 0 only).

A functionality that is peculiar to MUMPS is the ability to return the Schur complement ma-
trix, with respect to a specified set of nodes.

int ComputeSchurComplement(bool flag, int NumSchurComplementRows,
int* SchurComplementRows);

This method computes (if flag is true) the Schur complement with respect to the set of indices in-
cluded in the integer array SchurComplementRows , of size NumSchurComplementRows.
This is a global Schur complement, and it is formed (as a dense matrix) on processor 0 only.
Method

Epetra_CrsMatrix* GetCrsSchurComplement()

20

returns the Schur complement in an Epetra CrsMatrix, on processor 0 only. No checks are per-
formed to see whether this action is legal or not (that is, if the call comes after the solver has been
invoked). The returned Epetra CrsMatrix must be free’d by the user. Method

Epetra_SerialDenseMatrix * GetDenseSchurComplement();

returns the Schur complement as a Epetra SerialDenseMatrix (on processor 0 only), to be free’d
by the user.

As an example, the following fragment of code shows how to use MUMPS to obtain the Schur
complement matrix with respect to a given subsets of nodes. First, we need to create an parameter
list, and an Amesos Mumps object.

Teuchos:::ParameterList params;
Amesos_Mumps * Solver;
Solver = new Amesos_Mumps(*Problem,params);

Then, we define the set of nodes that will constitute the Schur complement matrix. This must be
defined on processor 0 only. For instance, one may have:

int NumSchurComplementRows = 0;
int* SchurComplementRows = NULL;
if (Comm.MyPID() == 0)
{
NumSchurComplementRows = 4;
SchurComplementRows = new int[NumSchurComplementRows];
SchurComplementRows[0] = 0;
SchurComplementRows[1] = 1;
SchurComplementRows[2] = 2;
SchurComplementRows[3] = 3;

}

Now, we can ask for the Schur complement using

Solver->ComputeSchurComplement(true, NumSchurComplementRows,
SchurComplementRows);

The Schur complement matrix can be obtain after the solver phase:

Solver->Solve();
Epetra_CrsMatrix * SC;
SC = Solver->GetCrsSchurComplement();
Epetra_SerialDenseMatrix * SC_Dense;
SC_Dense = Solver->GetDenseSchurComplement();

21

4.9 Interface to DSCPACK 1.0

DSCPACK, written by Padma Raghavan, is a domain-separator code for the parallel solution of
sparse linear system. DSCPACK provides a variety of sparsity preserving (fill-reducing) ordering
and computes either an

��� �
(Cholesky) or

����� �
factorization of the linear system matrix. This

solver is written in C, and it uses MPI for inter-processor communication, and the BLAS library
for improved chace-performances. The implementation is based on the idea of partitioning the
sparse matrix into domains and separators.

We refer to the web site http://www.cse.psu.edu/˜ragavan/dscpack and to the
DSCPACK manual [7] for more information.

AMESOS must be configured with the option --enable-amesos-dscpack to use DSC-
PACK. The location of the header files should be specified using --with-incdirs, the location
of the library with --with-ldflags, and the library to be linked by --with-libs. See Sec-
tion 3 for an example.

DSCPACK solves the linear system using a number of processors that is a power of 2. If
necessary, we linear system matrix will be automatically redistributed on the highest number of
processors (either all the processors, or the number specified in MaxProcs) that is a power of 2.

5 Guide to the Examples

The AMESOS distribution contains examples in subdirectory

$TRILINOS_HOME/packages/amesos/example

Most of the example requires AMESOS to be configured with support for TRIUTILS. TRIUTILS is
a Trilinos package, automatically compiled unless the user specifies

--disable-triutils

or

--disable-default-packages

TRIUTILS is used to generate the linear system matrix. New users can start from file

$TRILINOS_HOME/packages/amesos/example/example_AmesosFactory.cpp

which contains detailed comments about all the AMESOS commands. Example

$TRILINOS_HOME/packages/amesos/example/example_AmesosFactory_HB.cpp

shows how to read a matrix stored in Harwell/Boeing format, redistribute it to all the processes
used in the computation, and use AMESOS to solve the corresponding linear system. Finally,
example

$TRILINOS_HOME/packages/amesos/example/example_AmesosFactory_Tridiag.cpp

creates a simple tridiagonal matrix, and solves the corresponding linear system.

22

References

[1] P.R. Amestoy, I.S. Duff, J.-Y. L’Excellent, and J. Koster. MUltifrontal Massively Parallel
Solver (MUMPS Versions 4.3.1) Users’ Guide, 2003.

[2] J. W. Demmel, J. R. Gilbert, and X. S. Li. SuperLU Users’ Guide, 2003.

[3] Free Software Foundation. Autoconf Home Page. http://www.gnu.org/software/autoconf.

[4] Free Software Foundation. Automake Home Page. http://www.gnu.org/software/automake.

[5] Dror Irony, Gil Shklarski, and Sivan Toledo. Parallel and fully recursive multifrontal supern-
odal sparse cholesky. Future Generation Computer Systems, 20(3):425–440, April 2004.

[6] G. Karypis and V. Kumar. METIS: Unstructured graph partitining and sparse matrix ordering
sy stem. Technical report, University of Minnesota, Department of Computer Science, 1998.

[7] P. Raghavan. Domain-separator codes for the parallel solution of sparse linear systems. Tech-
nical Report CSE-02-004, Department of Computer Science and Engineering, The Pennsyl-
vania State University, 2002.

[8] Vladimir Rotkin and Sivan Toledo. The design and implementation of a new out-of-core
sparse Cholesky factorization method. ACM Transactions on Mathematical Software, 30:19–
46, 2004.

[9] Elad Rozin and Sivan Toledo. Locality of reference in sparse Cholesky methods. To appear
in Electronic Transactions on Numerical Analysis, August 2004.

[10] M. Sala and M. Heroux. Robust algebraic preconditioners with IFPACK 3.0. Technical
Report SAND-0662, Sandia National Laboratories, February 2005.

[11] M. Sala, J. Hu, and R. Tuminaro. ML 3.1 smoothed aggregation user’s guide. Technical
Report SAND-4819, Sandia National Laboratories, September 2004.

[12] O. Schenk and K. Gärtner. On fast factorization pivoting methods for sparse symmetric
indefinite systems. Technical Report, Department of Computer Science, University ofBasel,
2004. Submitted.

[13] O. Schenk and K. Gärtner. Solving unsymmetric sparse systems of linear equations with
PARDISO. Journal of Future Generation Computer Systems, 20(3):475–487, 2004.

23

